P T F E H o s e

Phone: 800-642-4673 Fax: 262-781-2398 e mail: tom@midwestflexiblehose.com 5181 N. 125th St. Butler, WI 53007

Midwest Flexible Hose, Inc.

Table of Contents

Category		Page
Medium Pressure Smooth Bore Hose	Series SB	4
Open Pitch Extruded Convoluted Hose	Series CT/BCT	5
Smooth Bore PTFE Hose - True Bore	Series TW/TB	6
Convoluted PTFE Flared-Tube Designed Hose	Series FT/FTB	7
Fittings		8
Protective Hose Coverings		8
Ultra High Pressure Hose	Series HP	9
Rubber Covered Hose	Series RC/RCB	10
Metal Hose Lined with Smooth-Bore PTFE	Series MLT	11
Chemical Resistance Data Charts		12-19

WARNING

Hose has a finite lifespan. It is difficult to predict due to many contributing factors. We recommend hoses be inspected every six months for signs of wear, and replaced annually. In applications where hoses carry dangerous media or other critical applications we recommend hoses be inspected and replaced more frequently.

Medium Pressure Smooth Bore Hose - SERIES SB

CONSTRUCTION:

Smooth Bore Hose is constructed of an extruded virgin PTFE inner-core or carbon black dissipative PTFE with type 304 reinforcing stainless steel braid. This braid acts as both a protective covering and pressure carrier. Smooth bore hose handles "problem" fluids such as solvents, acids, fuels, chemicals and other types of the toughest service applications. It is available with thin or heavy wall tubing of polytetrafluoro-ethylene (PTFE).

- Temperature Rating: -65°F (-54°C) to +450°F (+230°C)
- High working and burst pressures
- Low-friction surface provides high flow rates
- Most cost effective of all PTFE lined hoses
- Easily drained and/or cleaned

<u> </u>	NUMBER Black	NOMINAL ID	ACTUA I D	N <u>L SIZE</u> O D	MAXIMUM WORKING PRESSURE	MINIMUM BURST PRESSURE	MINIMUM Bend Radius	APPROX Weight/ft.
SB-3	SB-3 Blk	3/16"	.125"	.23"	3000 PSI	12000 PSI	2.0"	.050 lbs.
SB-4	SB-4 Blk	1/4"	.19"	.30"	3000 PSI	12000 PSI	2.0"	.060 lbs.
SB-5	SB-5 Blk	5/16"	.25"	.37"	3000 PSI	12000 PSI	2.3"	.070 lbs.
SB-6	SB-6 Blk	3/8"	.32"	.40"	2500 PSI	10000 PSI	3.9"	.090 lbs.
SB-8	SB-8 Blk	1/2"	.41"	.52"	2000 PSI	8000 PSI	4.7"	.115 lbs.
SB-10	SB-10 Blk	5/8"	.50"	.59"	1750 PSI	7000 PSI	5.3"	.150 lbs.
SB-12	SB-12 Blk	3/4"	.62"	.80"	1500 PSI	6000 PSI	6.5"	.225 lbs.
SB-16	SB-16 Blk	1"	.87"	1.05"	1000 PSI	4000 PSI	7.8"	.285 lbs.
SB-20Z	SB-20Z Blk	1-1/4"	1.13"	1.38"	1000 PSI	4000 PSI	11.0"	.585 lbs.

Open Pitch Extruded Convoluted Hose - SERIES CT/BCT

CONSTRUCTION:

The CT/BCT Series is made with extruded seamless vacuum-formed white or black tube of open-pitch convoluted PTFE. The black conductive tubing is used for static dissipative purposes. Both are protected by high coverage stainless steel braid. The internal profile of the hose is formatted for high flow rates and the helical design aids in self draining. All fittings have been designed specially to add to the service life of the assembly of the hose.

BENEFITS:

- Temperature Rating: -65°F (-54°C) to +450°F (+230°C)
- · High pressure ratings
- · Open pitch assists self-draining and hose cleaning
- Steam cleanable
- Will not delaminate Suitable for steam applications or thermal cycling
- Flexible design for easy installation
- · Light weight
- Can be autoclaved
- · Long life impulse

NOTE: POLYPROPYLENE BRAIDED CONVOLUTED PTFE HOSE AVAILABLE

PA	RT #	NOMIN	AL HOSE Ze	MAXIMUM WORKING	MINIMUM BURST	MINIMUM BEND	APPROX.
WHITE	BLACK	I D	O D	PRESSURE	PRESSURE	RADIUS	WEIGHT/FT.
CT-06	BCT-06	0.37"	0.56"	1850 PSI	7400 PSI	2.0"	.23 lbs.
CT-08	BCT-08	0.50"	0.75"	1500 PSI	6000 PSI	3.0"	.27 lbs.
CT-12	BCT-12	0.75"	1.01"	1300 PSI	5200 PSI	3.5"	.43 lbs.
CT-16	BCT-16	1.00"	1.30"	1000 PSI	4000 PSI	4.0"	.63 lbs.
CT-20	BCT-20	1.25"	1.57"	900 PSI	3600 PSI	4.5"	.75 lbs.
CT-24	BCT-24	1.50"	1.89"	700 PSI	2800 PSI	4.5"	.88 lbs.
CT-32	BCT-32	2.00"	2.38"	500 PSI	2000 PSI	5.0"	1.11 lbs.
CT-40	BCT-40	2.5"	3.25"	212 PSI	850 PSI	13"	1.35 lbs.
CT-48	BCT-48	3"	3.87"	175 PSI	700 PSI	14"	1.75 lbs.

Smooth Bore PTFE Hose - True Bore - SERIES - TW/TB

CONSTRUCTION:

Smooth Bore Hose is constructed of an extruded virgin PTFE inner-core. This core can be either white or black (static dissipative) PTFE with type 304 reinforcing stainless steel braid. This braid acts as both a protective covering and pressure carrier. Smooth bore hose handles "problem" fluids such as solvents, acids, fuels, chemicals and other types of the toughest service applications.

- Temperature Rating: -100°F to +450°F
- · High working and burst pressures
- · Low-friction surface of smooth bore hose provides high flow rates
- FDA and pharmaceutical approved
- Easily drained and/or cleaned

HOSE SIZE I D (IN.)	PART NUMBER WHITE/BLACK	Nominal O D (in.)	WORKING PRESSURE (PSI)	BURST PRESSURE (PSI)	MIN. BEND RADIUS (IN.)	VACUUM In./hg.	WEIGHT PER FOOT (POUNDS)
1/8"	-2TW/-2TB	0.240	3,000	15000	1.5	29.9	0.05
1/4"	-4TW/-4TB	0.380	3,000	13500	2.5	29.9	0.08
3/8"	-6TW/-6TB	0.520	2,500	10000	3.5	29.9	0.12
1/2"	-8TW/-8TB	0.660	2,000	8500	4.0	29.9	0.15
3/4"	-12TW/-12TB	0.880	1,200	4800	7.5	29.9	0.22
1"	-16TW/-16TB	1.160	800	3200	12.0	20.0	0.31
1-1/2"	-24TW/-24TB	1.740	900	4000	15.0	15.0	0.44

Convoluted PTFE Flared-Tube Designed Hose- SERIES FT/FTB

CONSTRUCTION:

Series FT/FTB Hose is constructed of heavy wall, convoluted, seamless extruded black or white conductive PTFE tubing locked in a stainless steel braid. It is the latest in hoses lined with PTFE with flared tubing. With this process, the convoluted tubing is fed through the flange retainer, flared over the face of the flange, and effectively isolates the flange from chemical transference. It is ideal in the prevention of internal corrosion to the fitting and chemical contamination.

- Temperature Rating: -65°F (-54°C) to +450°F (+230°C)
- · Helical design aids in draining and cleaning
- · Eliminates internal corrosion of fittings
- · No metallic contamination or transfer of chemical from fitting
- · Will not delaminate suitable for steam applications or thermal cycling
- Seal is made on flare no gaskets required easier installation
- · Reduces energy loss through fitting which gives higher flow rates

<u>PAI</u> WHITE	RT # BLACK	NOMI <u>HOSE</u> I D		MAXIMUM WORKING PRESSURE	MINIMUM BURST PRESSURE	MINIMUM BEND RADIUS
FT-12	FTB-12	0.78"	1.08"	425 PSI	1700 PSI	3.0"
FT-16	FTB-16	0.97"	1.36"	350 PSI	1400 PSI	4.0"
FT-20	FTB-20	1.32"	1.70"	330 PSI	1350 PSI	5.5"
FT-24	FTB-24	1.49"	1.85"	275 PSI	1100 PSI	7.0"
FT-32	FTB-32	1.92"	2.43"	250 PSI	1000 PSI	8.5"
FT-48	FTB-48	2.91"	3.80"	100 PSI	400 PSI	12.0"
FT-64	FTB-64	3.92"	4.95"	100 PSI	400 PSI	18.0"

Smooth Bore Fittings Available in Brass, Carbon Steel and Stainless Steel

Other Fittings Available

Flange Retainer

Male NPT

90° Female JIC Swivel

45° Female JIC Swivel

Female JIC Swivel

Tube Stub

Convoluted Fittings Available in Carbon Steel and Stainless Steel

Tri-Clamp

Male NPT

Female JIC Swivel

Flange Retainer

PROTECTIVE HOSE COVERINGS

Spring Guard

Spring guard reduces kinking and protects the hose from abrasion and rough handling.

Heat Shrink Tubing

To minimize hose O D, heat shrinkable tubing is used in applications where cleanliness is essential. This provides easy cleaning of the outer hose surface.

Nylon Sleeve Woven nylon tubular sleeve is ideal for use as a protective covering and withstands temperature up to 275°F.

Armor Guard

A highly flexible heavy duty interlocked metal casing to protect the hose against severe handling abuse and over bending. This can be applied over the entire length or in short sections at the end connection.

Silicone Fire Sleeve This fiberglass sleeving has a coating of silicone rubber bonded to it which offers flame resistance and has a continuous operating temperature of 500°F.

Ultra High Pressure Hose - SERIES HP

CONSTRUCTION:

The HP Series is constructed of an inner core of carbon black static dissipative PTFE. Multiple stainless steel wires are braided together to form a single braid of protection. In sizes -12 through -24 an additional layer of braid is added between the PTFE inner core and the outer braid. For pneumatic applications, a post-sintered tube is used to reduce effusion. For liquid and hydraulic applications, a non-sintered PTFE tube provides performance without added cost. This hose comes standard with stainless steel JIC 37° female swivels.

- Temperature Rating: -65°F (-54°C) to +400°F (+204°C)
- Extreme high pressure hose
- Smooth bore improves flow rates
- Resists kinking
- · Highly durable and unlimited shelf life
- · Lightweight with tight bend radius
- Sizes up to 1 1/2" I.D.
- Meets SAE requirements of 100R8 and 100R9

PART #	NOMINAL ID	_ACT I D	UAL O D	MAXIMUM WORKING PRESSURE	TEST PRESSURE	MINIMUM BURST PRESSURE	HIGH TEMP. BURST PRESSURE	Minimum Bend Radius	APPROX. WEIGHT/ FT.
S-4HP	1/4"	.22"	.39"	5000 PSI	10000 PSI	16000 PSI	12000 PSI	1.50"	.10 lbs.
S-6HP	3/8"	.31"	.49"	5000 PSI	10000 PSI	16000 PSI	12000 PSI	2.5"	.16 lbs.
S-8HP	1/2"	.40"	.62"	5000 PSI	10000 PSI	16000 PSI	12000 PSI	2.88"	.23 lbs.
S-10HP	5/8"	.50"	.73"	5000 PSI	10000 PSI	16000 PSI	12000 PSI	3.25"	.32 lbs.
S-12HP	3/4"	.62"	.99"	5000 PSI	10000 PSI	16000 PSI	12000 PSI	3.88"	.66 lbs.
S-16HP	1"	.87"	1.27"	5000 PSI	10000 PSI	16000 PSI	9000 PSI	5.00"	1.02 lbs.
S-20HP	1-1/4"	1.12"	1.66"	5000 PSI	10000 PSI	16000 PSI	9000 PSI	12.00"	1.85 lbs.
S-24HP	1-1/2"	1.38"	1.90"	4000 PSI	8000 PSI	12000 PSI	9000 PSI	14.00"	1.91 lbs.

Rubber Covered Hose - SERIES RC/RCB

CONSTRUCTION:

The RC/RCB Series starts with a smooth, non-stick FDA approved white FEP fluoropolymer. PTFE and PFA liners can be custom ordered. Two plies of synthetic rubber reinforced with horizontal fabric braid are permanently bonded to the FEP tube. A wire helix is included to support the shape in full vacuum and to prevent kinking. This provides a grounded path for electrical charges through the exterior body of the hose. (For materials that may create a static buildup on the inner FEP liner, a black conductive FEP is required to dissipate the charge.) The hose is protected by an abrasion resistant rubber cover. The cover is weather resistant and will not fade or discolor with age.

- Temperature Rating: -40°F (-40°C) to +300°F (+148°C)
- Smooth bore up to 4" I.D.
- · Less turbulence and better flow rates are made possible by the smoothbore design
- Thermal insulation
- Easily drained and steam cleanable
- Feel of rubber hose

	PAF WHITE	RT # BLACK		IINAL SIZE O D	MAXIMUM WORKING PRESSURE @ 70° F	Minimum Burst Pressure	VACUUM RATING @ 70° F	MINIMUM BEND RADIUS	APPROX. WEIGHT/FT.
l	RC-08	RCB-08	0.50"	0.87"	550 PSI	2200 PSI	Full	3.0"	.33 lbs.
	RC-12	RCB-12	0.75"	1.25"	450 PSI	1800 PSI	Full	3.5"	.60 lbs.
	RC-16	RCB-16	1.00"	1.50"	450 PSI	1800 PSI	Full	4.0"	.73 lbs.
	RC-24	RCB-24	1.50"	2.00"	400 PSI	1600 PSI	Full	8.5"	1.20 lbs.
	RC-32	RCB-32	2.00"	2.50"	375 PSI	1500 PSI	Full	10.5"	1.45 lbs.
	RC-48	RCB-48	3.00"	3.50"	175 PSI	700 PSI	Full	25.0"	2.40 lbs.
	RC-64	RCB-64	4.00"	4.50"	150 PSI	600 PSI	Full	42.0"	3.55 lbs.
	RC-16 RC-24 RC-32 RC-48	RCB-16 RCB-24 RCB-32 RCB-48	1.00" 1.50" 2.00" 3.00"	1.50" 2.00" 2.50" 3.50"	450 PSI 400 PSI 375 PSI 175 PSI	1800 PSI 1600 PSI 1500 PSI 700 PSI	Full Full Full Full	4.0" 8.5" 10.5" 25.0"	.73 lbs. 1.20 lbs 1.45 lbs 2.40 lbs

CONSTRUCTION:

Series MLT Hose construction starts with stainless steel braided metal hose. A smooth liner of extruded PTFE is inserted into the hose, locked in place, and flared over the flange faces or Tri-Clamp. The PTFE liner is stationary and will not move inside the hose. Gas build-up between layers is prevented with vent holes in the ends.

- Temperature Rating: -65°F (-54°C) to +350°F (+176°C)
- Smooth liner no entrapment areas
- · High flow rates
- Easily cleaned
- · Offers rugged service
- · PTFE protection against chemical attacks throughout the entire assembly

PART #		IINAL <u>= Size</u> O D	MAXIMUM Working Pressure @ 70° F	MINIMUM BURST Pressure @ 70° f	VACUUM Rating (HG) @ 70° F	APPROX. WEIGHT/FT.
MLT-16	1.00"	1.64"	500 PSI	2000 PSI	26"	2.00 lbs.
MLT-24	1.50"	2.33"	400 PSI	1600 PSI	26"	3.86 lbs.
MLT-32	2.00"	2.88"	300 PSI	1200 PSI	24"	5.00 lbs.
MLT-48	3.00"	3.94"	200 PSI	800 PSI	24"	5.25 lbs.
MLT-64	4.00"	4.98"	150 PSI	600 PSI	20"	5.60 lbs.
MLT-96	6.00"	7.00"	150 PSI	600 PSI	20"	13.00 lbs.
MLT-128	8.00"	9.10"	125 PSI	500 PSI	20"	20.00 lbs.
MLT-160	10.00"	11.20"	100 PSI	400 PSI	20"	26.00 lbs.
MLT-192	12.00"	13.22"	90 PSI	360 PSI	20"	34.50 lbs.

				E2121AN				
Material Compatibility Key:	1. Excellent	2. Acce	eptable	3. Not R	ecomme	ended	0. No Inform	nation, Test Before Using
				Fitting Ma				
Acataldah	Chemical	PTFE	CS	304SS	316SS	Brass	Effusion	
Acetaldeh	-	1	1	1	1	1	В	
Acetic Aci		1	0	2	2	0		
Acetic Aci		1	3	2	2	3		
Acetic Anl	nyariae	1	3	2	2	3		
Acetone		1	1	1	1	1		
Acetylene		1	0	1	1	2	С	
Acrylonitri		1	1	1	1	0		
	nonium/Potassium	1	3	2	2	3		
Aluminum		1	0	1	1	3		
Aluminum		1	3	2	2	3		
Aluminum		1	3	2	2	3		
Aluminum		1	3	2	2	3		
	Hydroxide	1	0	1	1	1		
Aluminum	Nitrate	1	3	1	1	0		
Aluminum	Salts	1	0	2	2	0		
Aluminum	Sulfate	1	3	3	2	3		
Ammonia	, Anhydrous	1	1	1	1	0		
Ammonia	, Aqueous	1	0	1	1	3		
Ammoniu	m Carbonate	0	1	1	1	0		
Ammoniu	m Chloride	1	0	2	2	3		
Ammoniu	m Hydroxide	1	2	1	1	3		
Ammoniu	m Metaphosphate	1	1	1	1	0		
Ammoniu	m Nitrate	1	1	1	1	3		
Ammoniu	m Nitrite	0	0	1	1	0		Annun 1
Ammoniu	m Persulfate	0	0	1	1	0		MFH
Ammoniu	m Phosphate	1	3	2	1	0		
	m Sulphate	1	1	1	1	3		Effusion Chart Key: A. Effusion will occur
Ammoniu	m Thiocyanate	1	1	1	1	0		with the potential to
Amyl Acet	-	1	3	1	1	1		displace breathable air in an enclosed
Amyl Alco		1	1	1	1	1		environment.
Amyl Chlo		1	0	1	1	0		B. These compounds
•	oronaphthalene	1	0	1	1	0		have the ability to
Amyl Nap	·	1	0	1	1	0		effuse and with certain atmospheric conditions
Aniline		1	2	1	1	3		can corrode metallic
Aniline Dy	/es	1	3	1	1	0		components such as
•	drochloride	1	0	3	3	3		braid and fittings. Applications with these
Animal Fa		1	1	1	1	0		compounds require
Aqua Reg		1	0	3	3	0		using hose assemblies only in well ventilated
Arsenic A		1	2	0	1	0		areas.
Askarel		0	2	1	1	1		C. Chemicals in this
Asphalt		1	1	1				category are in a gas
Asphait Barium Ca	arbanata	1	2		1	2		phase at atmospheric pressures and at
		1		1	1	1 2		temperatures of 56°F
Barium Cl	lionue	1	3	1	1	2	0 040 4070	or less.

800-642-4673 Midwest Flexile Hose, Inc.

		<u>CHEMICAL RESISTANCE DATA</u>							
Material Compatibility Key:	1. Excellent	2. Ac	ceptable	3. Not	Recomm	ended	0. No Information, Test Before Using		
				Fitting M					
	Chemical	PTFE	CS	304SS	316SS	Brass	Effusion		
Barium Hyd		1	2	1	1	0			
Barium Sul		1	1	1	1	2			
Barium Sul	fide	1	3	1	1	3			
Beer		1	2	1	1	1			
Beet Sugar	r Liquors	1	1	1	1	0			
Benzene		1	1	1	1	1			
Benzenesu	Ilfonic Acid	0	3	0	2	0			
Benzaldeh	yde	1	1	0	0	0			
Benzine		1	1	1	1	1	В		
Benzyl Alco	ohol	1	1	1	1	0			
Benzyl Ber	nzoate	1	1	1	1	0			
Benzyl Chl	oride	1	1	0	0	0			
Bismuth Ca	arbonate	1	1	1	1	0			
Black Sulpl	hate Liquor	1	1	1	1	0			
Blast Furna	-	1	1	1	1	1	С		
Borax		1	2	1	1	2	-		
Bordeaux	Mixture	1	0	1	1	0			
Boric Acid		1	3	2	1	3			
Bunker Oil		1	1	1	1	1			
Butadiene		1	0	1	1	1			
Butane		1	1	1	1	1	С		
Butter Oil		1	1		1	1	U		
		1		1	1				
Butyric Acid		1	3	1		2			
Butyl Aceta		1	2	1	1	1			
Butyl Alcoh		1	1	1	1	1		Annun 110	
Butyl Amine		0	1	1	1	1		MFH	
Butyl Carbi		1	1	1	1	1			
Butyl Stear		1	1	1	1	1		Effusion Chart Key: A. Effusion will occur	
Butyl Merca	-	1	0	1	1	0		with the potential to	
Butyraldeh	yde	1	0	0	0	1		displace breathable air in an enclosed	
Calcium Ac	cetate	1	1	1	1	1		environment.	
Calcium Bi	sulfate	1	0	2	1	3		B. These compounds	
Calcium Bi	sulfite	1	0	1	1	0		have the ability to	
Calcium Ca	arbonate	1	1	1	1	1		effuse and with certain	
Calcium Ch	nlorate	1	0	2	1	0		atmospheric conditions can corrode metallic	
Calcium Ch	nloride	1	3	2	1	2		components such as	
Calcium Hy	ydroixe	1	3	3	1	2		braid and fittings. Applications with these	
Calcium Hy	ypochlorite	1	0	3	2	3		compounds require	
Calcium Ni		1	1	1	1	1		using hose assemblies only in well ventilated	
Calcium Si		1	1	1	1	1	В	areas.	
Calcium Su		1	1	1	1	1		C. Chemicals in this	
Calcium Su		1	1	1	1	0		category are in a gas	
Cane Suga		1	1	1	1	2		phase at atmospheric	
Carbolic Ac		1	3	1	1	3		pressures and at temperatures of 56°F	
			0		I	v		or less.	

0. No Information, Test Before Using

				LUIUIA				
Material Compatibility Key:	1. Excellent	2. Ac	ceptable		Recomm	ended	0. No Info	rm
				Fitting M				
Carbon Dio	hemical	PTFE 1	CS 1	304SS	316SS	Brass 1	Effusion A	
Carbon Disu		0	2	1	1	2	A	
Carbonic Ac		1	2	1	1	2		
Carbon Mor		1	3 1	1			C	
Carbon Mor		1	3		1	1	С	
Carbon Tetra Castor Oil	achionae			2	2	2		
Castor On Caustic Sod		1 1	1 2	1	1	1		
				1	1	3		
Cellosolve, A		1	1	1	1	0		
Cellosolve, I	Butyi	1	1	1	1	0		
Cellulube		1 *	1	1	1	1	0	
Chlorine, Ga	-	*	2	3	3	2	С	
	seous, Wet*		3	3	3	3	В	
Chorine Trifl		0	3	0	0	0	С	
Chloroacetic		1	3	3	3	2		
Chlorobenze		1	1	1	1	1		
Cholorbrom	omethane	1	1	1	1	1		
Chloroform		1	1	1	1	1		
O-Chlorona		1	1	1	1	1		
Chorotoluen		1	1	1	1	1		
Chromic Aci	d	1	3	3	2	3		
Citric Acid		1	3	3	1	3		
Coke Over (1	1	1	1	0		
Copper Chlo		1	3	3	1	3		
Copper Cha	nide	1	0	1	1	3		
Copper Sulf	ate	1	3	1	1	3		
Corn Syrup		1	1	1	1	0		
Creosote		1	2	1	1	3		
Cresol		1	2	1	1	0		
Crude Wax		1	1	1	1	1		
Cutting Oil		1	1	1	1	1		
Cyclohexan	e	1	1	1	1	1		
Cyclohexan	one	1	0	1	1	0		
Cymene		1	0	0	0	1		
Decalin		1	0	0	0	1		
Denatured A	lcohol	1	1	1	1	1		
Diacetone		1	1	1	1	1		
Diacetone A	lcohol	1	1	1	1	1		
Dibenzyl Etł	ner	1	1	1	1	1		
Dibutyl Ethe	r	1	1	1	1	1		
Dibutyl Phth	alate	1	1	1	1	1		
Dibutyl Seba	acate	1	1	1	1	1		

Effusion Chart Key: A. Effusion will occur with the potential to displace breathable air in an enclosed environment.

B. These compounds have the ability to effuse and with certain atmospheric conditions can corrode metallic components such as braid and fittings. Applications with these compounds require using hose assemblies only in well ventilated areas.

C. Chemicals in this category are in a gas phase at atmospheric pressures and at temperatures of 56°F or less.

800-642-4673 Midwest Flexile Hose, Inc.

		UHE	WICAL I	<u>1512141</u>		A			
Material Compatibility Key:	1. Excellent	2. Ac	ceptable	3. Not	Recomm	ended	0. No Information, Test Before Using		
				Fitting Ma					
Dichlorobn	Chemical	PTFE 1	CS 0	304SS	316SS	Brass 1	Effusion		
Diesel Oil	2010	1	1	1	1	1			
Diethylamir		1	3	0	2	•			
Diethyl Eth		1	5 1	1	۲ ۲	3 1	Р		
Diethylene		1	1		1	1	В		
-	-	•	•	1	1	•			
Diethyl Pht		1	0	1	1	1			
Diethyl Seb		1	0	1	1	1			
Di-Isobutyle		0	0	1	1	1			
Di-Isopropy		1	0	1	1	1			
Dimethyl Ai		1	0	0	0	1			
Dimethyl Fo		0	1	1	1	0			
Dimethyl P		1	0	0	0	1			
Dioctyl Phtl	hlatate	1	1	1	1	1			
Dioxane		1	1	1	1	1			
Dipentene		1	1	1	1	1			
Ethanolami	ne	1	1	1	1	1			
Ethyl Aceta	te	1	1	1	1	1			
Ethyl Atryla	te	0	1	1	1	0			
Ethyl Alcoh	ol	1	1	1	1	2			
Ethyl Benze	ene	1	1	1	1	1			
Ethyl Cellul	ose	1	1	1	1	1			
Ethyl Chlor	ide	1	2	1	1	2			
Ethyl Ether		1	2	1	1	1			
Ethyl Merta	ptan	1	2	0	0	2	В		
Ethyl Pento	chlorobenzene	1	2	1	1	1			
Ethylene C	hloride	1	2	1	1	2		[MFH]	
Ethylene C	hlorohydrin	1	0	0	0	0		Summing-	
Ethylene D	iamine	1	0	0	0	1		Effusion Chart Key:	
Ethylene G		1	2	1	1	1		A. Effusion will occur with the potential to	
Fatty Acids	-	1	0	1	1	0		displace breathable air	
Ferric Chlo		1	3	3	3	3		in an enclosed environment.	
Ferric Nitra	te	1	3	1	1	0			
Ferric Sulfa	ite	1	3	1	1	3		B. These compounds have the ability to	
Ferrous Ch		1	3	1	2	2		effuse and with certain	
Ferrous Nit		1	0	1	- 1	0		atmospheric conditions can corrode metallic	
Ferrous Su		1	3	1	1	2		components such as	
Fluoroboric		1	0	1	1	0		braid and fittings.	
Flormaldeh		1	0	1	1	1		Applications with these compounds require	
Formic Acid	-	1	3	1	2	1		using hose assemblies	
Freon 12	a	2	3	1	2	0		only in well ventilated areas.	
Freon 114		2	3	1	1	0	٨		
Fuel Oil		2 1	3 2	2	2	0 1	A A	C. Chemicals in this category are in a gas	
ruei Oli		I	2	2	2	I	A	phase at atmospheric	

pressures and at temperatures of 56°F

or less.

		CHEMICAL RESISTANCE DATA						
Material Compatil	bility Key: 1. Excellent	2. Ac	ceptable	3. Not	Recomm	ended	0. No Inform	ation, Test Before Using
				Fitting M				
	Chemical	PTFE	CS	304SS	316SS	Brass	Effusion	
	Fumaric Acid	0	0	1	1	0		
	Furon Furfuran	1	1	1	1	1		
	Fufural	1	2	1	1	1		
	Gallic Acid	1	3	1	1	0		
	Gasoline	1	2	1	1	1		
	Glauber's Salt	0	1	1	1	0		
	Glucose	1	1	1	1	1		
	Glue	1	2	1	1	3		
	Glycerin	1	2	1	1	1		
	Glycols	1	1	1	1	1		
	Green Sulfate Liquor	1	1	1	1	0		
	n-Hexaldehyde	1	1	1	1	1		
	Hexane	1	1	1	1	1		
	Hexene	1	1	1	1	1		
	Hexyl Alcohol	1	1	1	2	0		
	Hydraulic Oil, Petroleum	1	1	1	1	1		
	Hydrochloric Acid, 15%	1	3	3	3	3	В	
	Hydrochloric Acid, 37%	1	3	3	3	3	В	
	Hydrocarbon Acid	1	3	1	1	3		
	Hydrofluoric Acid,	1	3	3	3	3		
	Concentrated							
	Hydrofluosilic Acid	1	0	3	3	3		
	Hydrogen, Gaseous	*	1	1	1	1	С	
	Hydrogen Peroxide, 70%	1	3	2	1	3	·	
	Hydrogen Sulfide, Gaseous	1	3	2	1	3		
	Hydroquinone	0	1	0	1	0		f Martin B
	Isobutyl Alcohol	1	1	1	1	2		Summing-
	Iso Octane	1	1	1	1	1		Effusion Chart Key:
	Isopropyl Acetate	1	1	1	1	1		A. Effusion will occur
	Isopropyl Alcohol	1	1	1	1	2		with the potential to displace breathable air
		1	1		1			in an enclosed
	Isopropyl Ether		-	1	1	1		environment.
	Kerosene	1	1	1	1	1		B. These compounds
		1	3	3	1	1	_	have the ability to effuse and with certain
	Lacquer Solvents	1	3	3	1	1	В	atmospheric conditions
	Lactic Acid	1	3	2	1	2		can corrode metallic components such as
	Lard	1	1	1	1	3		braid and fittings.
	Lead Acetate	1	2	1	1	1		Applications with these
	Lead Nitrate	0	1	1	1	0		compounds require using hose assemblies
	Lime Bleath	0	3	2	1	0		only in well ventilated
	Linoleic Acid	1	0	0	0	0		areas.
	Linseed Oil	1	2	1	1	2		C. Chemicals in this
	Lubricating Oils, Petroleum	1	1	1	1	1		category are in a gas phase at atmospheric
	Magnesium Chloride	1	3	2	1	2		pressures and at
	Magnesium Hydroxide	1	1	1	1	0		temperatures of 56°F or less.
							000 040 4070	Nidwoot Flovile Llose Inc.

800-642-4673 Midwest Flexile Hose, Inc.

				<u> ESISTA</u>				
Material Compatibility Key	bility Key: 1. Excellent		2. Acceptable		Recomm	ended	0. No Information, Test Before Using	
	Chemical	PTFE	CS	Fitting M 304SS	aterial 316SS	Brass	Effusion	
Magnesiu		1	2	30435 1	1	Drass	EIIUSIOII	
Molic Acid		1	2	2	1	0		
Mercuric		1	3	1	1	3		
Mercury		1	1	1	1	3		
Mesityl O	xide	1	1	1	1	1		
Methyl Ac		1	1	1	1	1		
Methyl Atı		0	1	1	1	1		
Methyl Ald	-	1	1	1	1	2		
Methyl Br		1	1	1	1	1	В	
-	utyl Ketone	0	1	1	1	1		
Methyl Ch		1	1	1	1	1	В	
-	e Chloride	1	1	1	1	1	_	
•	hyl Ketone (MEK)	1	1	1	1	1		
Methyl Fo		1	1	1	1	1	В	
-	obutyl Ketone	1	1	1	1	1	Б	
-	ethacrylate	1	1	1	1	1		
Methyl Sa	•	1	1	1	1	1		
Milk	alicylate	1	3	1	1	3		
Mineral O		1	3	1	1	3		
		1	1	1	1	1		
	probenzene	1	1	1	1	1		
Monoetha	anoiamine	0	1	1	1	1		
Naphtha		1	2	1	1	1		
Naphthele		1	0	1	1	0		
Naphthen		1	0	2	1	0		
Natural G		1	1	1	1	2		A Manual State
Nickel Ac		1	1	1	1	1		AMFH
Nickel Ch		1	3	2	2	3		Effusion Chart Key:
Nickel Su		1	0	2	1	3		A. Effusion will occur
Niter Cok		0	3	2	1	0		with the potential to
	d,all Concentrations	1	3	2	2	3		displace breathable air in an enclosed
Nitric Acic	d, Red Fuming	1	3	2	2	3		environment.
Nitrobenz		1	1	1	1	1		B. These compounds
Nitroethar	ne	1	0	1	1	1		have the ability to
Nitrogen,	Gaseous	1	1	1	1	1	A	effuse and with certain atmospheric conditions
Nitrogen,	Tetroxide	0	0	0	2	0		can corrode metallic
n-Octane		0	1	1	1	1		components such as braid and fittings.
Octyl Alco	phol	1	1	1	1	2		Applications with these
Oil, SAE		1	1	1	1	1		compounds require using hose assemblies
Oleic Acid	t	1	2	2	1	2		only in well ventilated
Olive Oil		1	2	2	1	2		areas.
Oxalic Act	id	1	3	2	1	3		C. Chemicals in this
Oxygen, (Gaseous	1	1	1	1	1	А	category are in a gas phase at atmospheric
Ozone		1	1	1	1	1		pressures and at
Paint		1	0	1	1	1		temperatures of 56°F
	000 040 4070							or less.

<u>CHEMICAL RESISTANCE DATA</u>								
Material Compatibility Key: 1. Excellent		2. Acceptable		3. Not Recommended			0. No Information, Test Before Using	
				Fitting Material				
Ch Palmitic Acid	nemical	PTFE 1	CS 1	304SS 2	316SS	Brass 3	Effusion	
Paintic Add Peanut Oil		1	1		1	3		
Perchloric Ac	id	1	0	1 2		0		
Perchlorethyl		1	1	2 1	1	0		
Petroleum	lelle	1	1		1	1		
Phenol		1	3	1	1	1 2		
		1		1	1	3		
Phorone 1 Piric Acid		1	1 3	1	1	1		
Pine Acid		1	3 1	1	1	3 ₁		
Pine Oil		1	1	1	1	0		
Plating Soluti	ion Chromo	1	0	1	1	0		
Potassium Ad		1		3 ₁	3	0		
			0	1	1	0		
Potassium C		1	2	2	1	3		
Potassium C		1	2	1	1	3		
Potassium Di		1	0	1	1	0		
	ydroxide, 30%	1	3	1	1	3		
Potassium Ni		1	3	1	1	2		
Potassium Si	ultate	1	2	1	1	2		
Propane		1	1	1	1	1	A	
Propyl Acetat		0	1	1	1	1		
Propyl Alcoho		1	1	1	1	2		
Pyricine, 50%	0	1	0	1	1	1		
Red Oil		1	2	2	1	2		
Salicylic Acid		0	0	1	1	0		
Salt Water		1	2	1	1	3		ATTIMITIES
Sewage		1	3	1	1	1		MFH
Silicone Grea	ases	0	1	1	1	1		
Silicone Oils		0	1	1	1	1		Effusion Chart Key: A. Effusion will occur
Silver Nitrate		1	2	1	1	2		with the potential to
Skydrol 500 8	& 7000	1	1	1	1	0		displace breathable air in an enclosed
Soap Solution	ns	1	1	1	1	1		environment.
Soda Ash		1	1	1	1	2		B. These compounds
Sodium Aceta	ate	1	1	1	1	1		have the ability to
Sodium Bicar	rbonate	1	2	1	1	2		effuse and with certain atmospheric conditions
Sodium Bisul	fite	1	1	1	1	0		can corrode metallic
Sodium Bora	te	1	1	1	1	0		components such as
Sodium Chlo	ride	1	2	2	1	3		braid and fittings. Applications with these
Sodium Cyar	nide	1	2	1	1	3		compounds require
Sodium Hydr	oxide, 40%	1	2	1	1	3		using hose assemblies only in well ventilated
Sodium Hypo	ochlorite	1	3	3	2	3		areas.
Sodium Meta	phosphate	1	3	1	1	3		C. Chemicals in this
Sodium Nitra	te	1	1	2	2	2		category are in a gas
Sodium Perb	orate	1	3	1	1	3		phase at atmospheric pressures and at
Sodium Pero	xide	1	3	1	1	3		temperatures of 56°F or less.

800-642-4673 Midwest Flexile Hose, Inc.

			129191A		A		
Material Compatibility Key: 1. Excellent		2. Acceptable		Recomm	ended	0. No Information, Test Before Using	
Observiced	DTEE		Fitting M			Effection	
Chemical Sodium Phosphate	PTFE	CS 0	304SS	316SS	Brass 3	Effusion	
Sodium Thiosulfate	1	3	1	1	3		
Soybean Oil	1	1	1	1	0		
Stannic Chloride	1	3	0	0	3		
Steam	1	0 1	1	1	2	A	
Stearic Acid	1	3	2	1	3	~	
Stoddard Solvent	1	2	1	1	1		
Styrene	1	2	0	2	2		
Sucrose Solution	1	1	1	1	0		
Sulfur, 200°F	1	2	2	1	3		
Sulfur Chloride	1	3	3	2	3		
Sulfur Dioxide	1	2	1	1	1	С	
Sulfur Trioxide	1	2	2	2	0	В	
Sulfuric Acid, 10%	1	3	3	2	3	В	
Sulfuric Acid, 98%	1	2	3	2	3		
Sulfuric Acid, 507	1	2	0	1	3		
Sulfuric Acid, 1 uning Sulfurous Acid, 10%	1	2	2	1	3		
Sulfurous Acid, 15%	1	3	2	2	3		
Tonnic Acid, 10%	1	2	1	2	3		
Tar, Bituminous	1	2	1	1			
Tartaric Acid	1	0	2		2		
Terpineol	1	0	2	2	0		
Titanium Tetrachloride	0	1		0	0		
	1		2	2	3		
Toluene	•	1	1	1	1		
Toluene Disocyanote Transformer Oil	0 1	0 1	0	0	0		
Transmission Fluid, Type A	1	1	1	1	1		
		1	1	1	1		A MELL
Tributoxyethyl Phosphate	1	1	0	0	0		Summing-
Tributyl Phosphate	1 1	1	0	0	0		Effusion Chart Key:
Trichlorethylene		3	0	1	1		A. Effusion will occur
Tricresyl Phophate	1	1	0	2	0		with the potential to
Tung Oil	1	1	1	1	1		displace breathable air in an enclosed
Turpentine	1	0	1	1	2		environment.
Urea Solution, 50%	1	1	1	1	0		B. These compounds
Varnish	0	2	1	1	2		have the ability to
Vegetable Oils	1	1	1	1	0		effuse and with certain
Versilube	1	1	1	1	1		atmospheric conditions can corrode metallic
Vinegar	1	3	2	1	3		components such as
Vinyl Chloride	1	2	1	1	3	С	braid and fittings. Applications with these
Water	1	2	1	1	1		compounds require
Whiskey, Wines	1	3	2	1	3		using hose assemblies
Xylene	1	2	2	2	0		only in well ventilated areas.
Zinc Acetate	1	1	1	1	1		
Zinc Chloride	1	3	2	1	3		C. Chemicals in this
Zinc Sulfate	1	3	2	1	3		category are in a gas phase at atmospheric pressures and at temperatures of 56°F or less.

Distributed by:

Phone: 800-642-4673

Fax: 262-781-2398

e mail: tom@midwestflexiblehose.com

5181 N. 125th St., P.O. Box 249 Butler, WI 53007

